
56

9. Man Pages

In the Unix world, there are a lot of manuals. They have little sections that describe individual
functions that you have at your disposal.

Of course, manual would be too much of a thing to type. I mean, no one in the Unix world,
including myself, likes to type that much. Indeed I could go on and on at great length about how much
I prefer to be terse but instead I shall be brief and not bore you with long-winded diatribes about how
utterly amazingly brief I prefer to be in virtually all circumstances in their entirety.

[Applause]
Thank you. What I am getting at is that these pages are called “man pages” in the Unix world, and I

have included my own personal truncated variant here for your reading enjoyment. The thing is, many of
these functions are way more general purpose than I'm letting on, but I'm only going to present the parts
that are relevant for Internet Sockets Programming.

But wait! That's not all that's wrong with my man pages:

• They are incomplete and only show the basics from the guide.

• There are many more man pages than this in the real world.

• They are different than the ones on your system.

• The header files might be different for certain functions on your system.

• The function parameters might be different for certain functions on your system.

If you want the real information, check your local Unix man pages by typing man whatever, where
“whatever” is something that you're incredibly interested in, such as “accept”. (I'm sure Microsoft
Visual Studio has something similar in their help section. But “man” is better because it is one byte more
concise than “help”. Unix wins again!)

So, if these are so flawed, why even include them at all in the Guide? Well, there are a few reasons,
but the best are that (a) these versions are geared specifically toward network programming and are
easier to digest than the real ones, and (b) these versions contain examples!

Oh! And speaking of the examples, I don't tend to put in all the error checking because it really
increases the length of the code. But you should absolutely do error checking pretty much any time
you make any of the system calls unless you're totally 100% sure it's not going to fail, and you should
probably do it even then!

Beej's Guide to Network Programming 57

9.1. accept()

Accept an incoming connection on a listening socket

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

Description
Once you've gone through the trouble of getting a SOCK_STREAM socket and setting it up for

incoming connections with listen(), then you call accept() to actually get yourself a new socket
descriptor to use for subsequent communication with the newly connected client.

The old socket that you are using for listening is still there, and will be used for further accept()
calls as they come in.

s The listen()ing socket descriptor.
addr This is filled in with the address of the site that's connecting to you.
addrlen This is filled in with the sizeof() the structure returned in the addr parameter.

You can safely ignore it if you assume you're getting a struct sockaddr_in
back, which you know you are, because that's the type you passed in for addr.

accept() will normally block, and you can use select() to peek on the listening socket
descriptor ahead of time to see if it's “ready to read”. If so, then there's a new connection waiting to
be accept()ed! Yay! Alternatively, you could set the O_NONBLOCK flag on the listening socket using
fcntl(), and then it will never block, choosing instead to return -1 with errno set to EWOULDBLOCK.

The socket descriptor returned by accept() is a bona fide socket descriptor, open and connected to
the remote host. You have to close() it when you're done with it.

Return Value
accept() returns the newly connected socket descriptor, or -1 on error, with errno set

appropriately.

Example
struct sockaddr_storage their_addr;
socklen_t addr_size;
struct addrinfo hints, *res;
int sockfd, new_fd;

// first, load up address structs with getaddrinfo():

memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE; // fill in my IP for me

getaddrinfo(NULL, MYPORT, &hints, &res);

// make a socket, bind it, and listen on it:

sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
bind(sockfd, res->ai_addr, res->ai_addrlen);
listen(sockfd, BACKLOG);

// now accept an incoming connection:

addr_size = sizeof their_addr;
new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &addr_size);

Beej's Guide to Network Programming 58

// ready to communicate on socket descriptor new_fd!

See Also
socket(), getaddrinfo(), listen(), struct sockaddr_in

Beej's Guide to Network Programming 59

9.2. bind()

Associate a socket with an IP address and port number

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, socklen_t addrlen);

Description
When a remote machine wants to connect to your server program, it needs two pieces of

information: the IP address and the port number. The bind() call allows you to do just that.
First, you call getaddrinfo() to load up a struct sockaddr with the destination address and

port information. Then you call socket() to get a socket descriptor, and then you pass the socket and
address into bind(), and the IP address and port are magically (using actual magic) bound to the socket!

If you don't know your IP address, or you know you only have one IP address on the machine, or
you don't care which of the machine's IP addresses is used, you can simply pass the AI_PASSIVE flag
in the hints parameter to getaddrinfo(). What this does is fill in the IP address part of the struct
sockaddr with a special value that tells bind() that it should automatically fill in this host's IP address.

What what? What special value is loaded into the struct sockaddr's IP address to cause it to
auto-fill the address with the current host? I'll tell you, but keep in mind this is only if you're filling
out the struct sockaddr by hand; if not, use the results from getaddrinfo(), as per above. In
IPv4, the sin_addr.s_addr field of the struct sockaddr_in structure is set to INADDR_ANY. In
IPv6, the sin6_addr field of the struct sockaddr_in6 structure is assigned into from the global
variable in6addr_any. Or, if you're declaring a new struct in6_addr, you can initialize it to
IN6ADDR_ANY_INIT.

Lastly, the addrlen parameter should be set to sizeof my_addr.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
// modern way of doing things with getaddrinfo()

struct addrinfo hints, *res;
int sockfd;

// first, load up address structs with getaddrinfo():

memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE; // fill in my IP for me

getaddrinfo(NULL, "3490", &hints, &res);

// make a socket:
// (you should actually walk the "res" linked list and error-check!)

sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

// bind it to the port we passed in to getaddrinfo():

bind(sockfd, res->ai_addr, res->ai_addrlen);

// example of packing a struct by hand, IPv4

struct sockaddr_in myaddr;
int s;

Beej's Guide to Network Programming 60

myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(3490);

// you can specify an IP address:
inet_pton(AF_INET, "63.161.169.137", &(myaddr.sin_addr));

// or you can let it automatically select one:
myaddr.sin_addr.s_addr = INADDR_ANY;

s = socket(PF_INET, SOCK_STREAM, 0);
bind(s, (struct sockaddr*)&myaddr, sizeof myaddr);

See Also
getaddrinfo(), socket(), struct sockaddr_in, struct in_addr

Beej's Guide to Network Programming 61

9.3. connect()

Connect a socket to a server

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *serv_addr,
 socklen_t addrlen);

Description
Once you've built a socket descriptor with the socket() call, you can connect() that socket to

a remote server using the well-named connect() system call. All you need to do is pass it the socket
descriptor and the address of the server you're interested in getting to know better. (Oh, and the length of
the address, which is commonly passed to functions like this.)

Usually this information comes along as the result of a call to getaddrinfo(), but you can fill out
your own struct sockaddr if you want to.

If you haven't yet called bind() on the socket descriptor, it is automatically bound to your IP
address and a random local port. This is usually just fine with you if you're not a server, since you
really don't care what your local port is; you only care what the remote port is so you can put it in the
serv_addr parameter. You can call bind() if you really want your client socket to be on a specific IP
address and port, but this is pretty rare.

Once the socket is connect()ed, you're free to send() and recv() data on it to your heart's
content.

Special note: if you connect() a SOCK_DGRAM UDP socket to a remote host, you can use send()
and recv() as well as sendto() and recvfrom(). If you want.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
// connect to www.example.com port 80 (http)

struct addrinfo hints, *res;
int sockfd;

// first, load up address structs with getaddrinfo():

memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_STREAM;

// we could put "80" instead on "http" on the next line:
getaddrinfo("www.example.com", "http", &hints, &res);

// make a socket:

sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

// connect it to the address and port we passed in to getaddrinfo():

connect(sockfd, res->ai_addr, res->ai_addrlen);

See Also
socket(), bind()

Beej's Guide to Network Programming 62

9.4. close()

Close a socket descriptor

Prototypes
#include <unistd.h>

int close(int s);

Description
After you've finished using the socket for whatever demented scheme you have concocted and you

don't want to send() or recv() or, indeed, do anything else at all with the socket, you can close() it,
and it'll be freed up, never to be used again.

The remote side can tell if this happens one of two ways. One: if the remote side calls recv(), it
will return 0. Two: if the remote side calls send(), it'll receive a signal SIGPIPE and send() will return
-1 and errno will be set to EPIPE.

Windows users: the function you need to use is called closesocket(), not close(). If you try
to use close() on a socket descriptor, it's possible Windows will get angry... And you wouldn't like it
when it's angry.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
s = socket(PF_INET, SOCK_DGRAM, 0);
.
.
.
// a whole lotta stuff...*BRRRONNNN!*
.
.
.
close(s); // not much to it, really.

See Also
socket(), shutdown()

Beej's Guide to Network Programming 63

9.5. getaddrinfo(), freeaddrinfo(),
gai_strerror()

Get information about a host name and/or service and load up a struct sockaddr with the result.

Prototypes
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *nodename, const char *servname,
 const struct addrinfo *hints, struct addrinfo **res);

void freeaddrinfo(struct addrinfo *ai);

const char *gai_strerror(int ecode);

struct addrinfo {
 int ai_flags; // AI_PASSIVE, AI_CANONNAME, ...
 int ai_family; // AF_xxx
 int ai_socktype; // SOCK_xxx
 int ai_protocol; // 0 (auto) or IPPROTO_TCP, IPPROTO_UDP

 socklen_t ai_addrlen; // length of ai_addr
 char *ai_canonname; // canonical name for nodename
 struct sockaddr *ai_addr; // binary address
 struct addrinfo *ai_next; // next structure in linked list
};

Description
getaddrinfo() is an excellent function that will return information on a particular host name

(such as its IP address) and load up a struct sockaddr for you, taking care of the gritty details (like
if it's IPv4 or IPv6.) It replaces the old functions gethostbyname() and getservbyname().The
description, below, contains a lot of information that might be a little daunting, but actual usage is pretty
simple. It might be worth it to check out the examples first.

The host name that you're interested in goes in the nodename parameter. The address can be either a
host name, like “www.example.com”, or an IPv4 or IPv6 address (passed as a string). This parameter can
also be NULL if you're using the AI_PASSIVE flag (see below.)

The servname parameter is basically the port number. It can be a port number (passed as a string,
like “80”), or it can be a service name, like “http” or “tftp” or “smtp” or “pop”, etc. Well-known service
names can be found in the IANA Port List42 or in your /etc/services file.

Lastly, for input parameters, we have hints. This is really where you get to define what the
getaddinfo() function is going to do. Zero the whole structure before use with memset(). Let's take a
look at the fields you need to set up before use.

The ai_flags can be set to a variety of things, but here are a couple important ones. (Multiple
flags can be specified by bitwise-ORing them together with the | operator.) Check your man page for the
complete list of flags.

AI_CANONNAME causes the ai_canonname of the result to the filled out with the host's canonical
(real) name. AI_PASSIVE causes the result's IP address to be filled out with INADDR_ANY (IPv4)or
in6addr_any (IPv6); this causes a subsequent call to bind() to auto-fill the IP address of the struct
sockaddr with the address of the current host. That's excellent for setting up a server when you don't
want to hardcode the address.

If you do use the AI_PASSIVE, flag, then you can pass NULL in the nodename (since bind() will
fill it in for you later.)

42. http://www.iana.org/assignments/port-numbers

http://www.iana.org/assignments/port-numbers

Beej's Guide to Network Programming 64

Continuing on with the input paramters, you'll likely want to set ai_family to AF_UNSPEC which
tells getaddrinfo() to look for both IPv4 and IPv6 addresses. You can also restrict yourself to one or
the other with AF_INET or AF_INET6.

Next, the socktype field should be set to SOCK_STREAM or SOCK_DGRAM, depending on which
type of socket you want.

Finally, just leave ai_protocol at 0 to automatically choose your protocol type.
Now, after you get all that stuff in there, you can finally make the call to getaddrinfo()!
Of course, this is where the fun begins. The res will now point to a linked list of struct

addrinfos, and you can go through this list to get all the addresses that match what you passed in with
the hints.

Now, it's possible to get some addresses that don't work for one reason or another, so what the Linux
man page does is loops through the list doing a call to socket() and connect() (or bind() if you're
setting up a server with the AI_PASSIVE flag) until it succeeds.

Finally, when you're done with the linked list, you need to call freeaddrinfo() to free up the
memory (or it will be leaked, and Some People will get upset.)

Return Value
Returns zero on success, or nonzero on error. If it returns nonzero, you can use the function

gai_strerror() to get a printable version of the error code in the return value.

Example
// code for a client connecting to a server
// namely a stream socket to www.example.com on port 80 (http)
// either IPv4 or IPv6

int sockfd;
struct addrinfo hints, *servinfo, *p;
int rv;

memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // use AF_INET6 to force IPv6
hints.ai_socktype = SOCK_STREAM;

if ((rv = getaddrinfo("www.example.com", "http", &hints, &servinfo)) != 0) {
 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
 exit(1);
}

// loop through all the results and connect to the first we can
for(p = servinfo; p != NULL; p = p->ai_next) {
 if ((sockfd = socket(p->ai_family, p->ai_socktype,
 p->ai_protocol)) == -1) {
 perror("socket");
 continue;
 }

 if (connect(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
 close(sockfd);
 perror("connect");
 continue;
 }

 break; // if we get here, we must have connected successfully
}

if (p == NULL) {
 // looped off the end of the list with no connection
 fprintf(stderr, "failed to connect\n");
 exit(2);
}

freeaddrinfo(servinfo); // all done with this structure

Beej's Guide to Network Programming 65

// code for a server waiting for connections
// namely a stream socket on port 3490, on this host's IP
// either IPv4 or IPv6.

int sockfd;
struct addrinfo hints, *servinfo, *p;
int rv;

memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // use AF_INET6 to force IPv6
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE; // use my IP address

if ((rv = getaddrinfo(NULL, "3490", &hints, &servinfo)) != 0) {
 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
 exit(1);
}

// loop through all the results and bind to the first we can
for(p = servinfo; p != NULL; p = p->ai_next) {
 if ((sockfd = socket(p->ai_family, p->ai_socktype,
 p->ai_protocol)) == -1) {
 perror("socket");
 continue;
 }

 if (bind(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
 close(sockfd);
 perror("bind");
 continue;
 }

 break; // if we get here, we must have connected successfully
}

if (p == NULL) {
 // looped off the end of the list with no successful bind
 fprintf(stderr, "failed to bind socket\n");
 exit(2);
}

freeaddrinfo(servinfo); // all done with this structure

See Also
gethostbyname(), getnameinfo()

Beej's Guide to Network Programming 66

9.6. gethostname()

Returns the name of the system

Prototypes
#include <sys/unistd.h>

int gethostname(char *name, size_t len);

Description
Your system has a name. They all do. This is a slightly more Unixy thing than the rest of the

networky stuff we've been talking about, but it still has its uses.
For instance, you can get your host name, and then call gethostbyname() to find out your IP

address.
The parameter name should point to a buffer that will hold the host name, and len is the size of

that buffer in bytes. gethostname() won't overwrite the end of the buffer (it might return an error, or it
might just stop writing), and it will NUL-terminate the string if there's room for it in the buffer.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
char hostname[128];

gethostname(hostname, sizeof hostname);
printf("My hostname: %s\n", hostname);

See Also
gethostbyname()

Beej's Guide to Network Programming 67

9.7. gethostbyname(), gethostbyaddr()

Get an IP address for a hostname, or vice-versa

Prototypes
#include <sys/socket.h>
#include <netdb.h>

struct hostent *gethostbyname(const char *name); // DEPRECATED!
struct hostent *gethostbyaddr(const char *addr, int len, int type);

Description
PLEASE NOTE: these two functions are superseded by getaddrinfo() and getnameinfo()! In

particular, gethostbyname() doesn't work well with IPv6.
These functions map back and forth between host names and IP addresses. For instance, if you have

“www.example.com”, you can use gethostbyname() to get its IP address and store it in a struct
in_addr.

Conversely, if you have a struct in_addr or a struct in6_addr, you can use
gethostbyaddr() to get the hostname back. gethostbyaddr() is IPv6 compatible, but you should
use the newer shinier getnameinfo() instead.

(If you have a string containing an IP address in dots-and-numbers format that you want to look up
the hostname of, you'd be better off using getaddrinfo() with the AI_CANONNAME flag.)

gethostbyname() takes a string like “www.yahoo.com”, and returns a struct hostent which
contains tons of information, including the IP address. (Other information is the official host name, a list
of aliases, the address type, the length of the addresses, and the list of addresses—it's a general-purpose
structure that's pretty easy to use for our specific purposes once you see how.)

gethostbyaddr() takes a struct in_addr or struct in6_addr and brings you up a
corresponding host name (if there is one), so it's sort of the reverse of gethostbyname(). As for
parameters, even though addr is a char*, you actually want to pass in a pointer to a struct in_addr.
len should be sizeof(struct in_addr), and type should be AF_INET.

So what is this struct hostent that gets returned? It has a number of fields that contain
information about the host in question.

char *h_name The real canonical host name.
char **h_aliases A list of aliases that can be accessed with arrays—the last element is

NULL

int h_addrtype The result's address type, which really should be AF_INET for our
purposes.

int length The length of the addresses in bytes, which is 4 for IP (version 4)
addresses.

char **h_addr_list A list of IP addresses for this host. Although this is a char**, it's
really an array of struct in_addr*s in disguise. The last array
element is NULL.

h_addr A commonly defined alias for h_addr_list[0]. If you just want any
old IP address for this host (yeah, they can have more than one) just
use this field.

Return Value
Returns a pointer to a resultant struct hostent or success, or NULL on error.
Instead of the normal perror() and all that stuff you'd normally use for error reporting, these

functions have parallel results in the variable h_errno, which can be printed using the functions
herror() or hstrerror(). These work just like the classic errno, perror(), and strerror()
functions you're used to.

Beej's Guide to Network Programming 68

Example
// THIS IS A DEPRECATED METHOD OF GETTING HOST NAMES
// use getaddrinfo() instead!

#include <stdio.h>
#include <errno.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int main(int argc, char *argv[])
{
 int i;
 struct hostent *he;
 struct in_addr **addr_list;

 if (argc != 2) {
 fprintf(stderr,"usage: ghbn hostname\n");
 return 1;
 }

 if ((he = gethostbyname(argv[1])) == NULL) { // get the host info
 herror("gethostbyname");
 return 2;
 }

 // print information about this host:
 printf("Official name is: %s\n", he->h_name);
 printf(" IP addresses: ");
 addr_list = (struct in_addr **)he->h_addr_list;
 for(i = 0; addr_list[i] != NULL; i++) {
 printf("%s ", inet_ntoa(*addr_list[i]));
 }
 printf("\n");

 return 0;
}

// THIS HAS BEEN SUPERCEDED
// use getnameinfo() instead!

struct hostent *he;
struct in_addr ipv4addr;
struct in6_addr ipv6addr;

inet_pton(AF_INET, "192.0.2.34", &ipv4addr);
he = gethostbyaddr(&ipv4addr, sizeof ipv4addr, AF_INET);
printf("Host name: %s\n", he->h_name);

inet_pton(AF_INET6, "2001:db8:63b3:1::beef", &ipv6addr);
he = gethostbyaddr(&ipv6addr, sizeof ipv6addr, AF_INET6);
printf("Host name: %s\n", he->h_name);

See Also
getaddrinfo(), getnameinfo(), gethostname(), errno, perror(), strerror(), struct

in_addr

Beej's Guide to Network Programming 69

9.8. getnameinfo()

Look up the host name and service name information for a given struct sockaddr.

Prototypes
#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
 char *host, size_t hostlen,
 char *serv, size_t servlen, int flags);

Description
This function is the opposite of getaddrinfo(), that is, this function takes an already

loaded struct sockaddr and does a name and service name lookup on it. It replaces the old
gethostbyaddr() and getservbyport() functions.

You have to pass in a pointer to a struct sockaddr (which in actuality is probably a struct
sockaddr_in or struct sockaddr_in6 that you've cast) in the sa parameter, and the length of that
struct in the salen.

The resultant host name and service name will be written to the area pointed to by the host and
serv parameters. Of course, you have to specify the max lengths of these buffers in hostlen and
servlen.

Finally, there are several flags you can pass, but here a a couple good ones. NI_NOFQDN will cause
the host to only contain the host name, not the whole domain name. NI_NAMEREQD will cause the
function to fail if the name cannot be found with a DNS lookup (if you don't specify this flag and the
name can't be found, getnameinfo() will put a string version of the IP address in host instead.)

As always, check your local man pages for the full scoop.

Return Value
Returns zero on success, or non-zero on error. If the return value is non-zero, it can be passed to

gai_strerror() to get a human-readable string. See getaddrinfo for more information.

Example
struct sockaddr_in6 sa; // could be IPv4 if you want
char host[1024];
char service[20];

// pretend sa is full of good information about the host and port...

getnameinfo(&sa, sizeof sa, host, sizeof host, service, sizeof service, 0);

printf(" host: %s\n", host); // e.g. "www.example.com"
printf("service: %s\n", service); // e.g. "http"

See Also
getaddrinfo(), gethostbyaddr()

Beej's Guide to Network Programming 70

9.9. getpeername()

Return address info about the remote side of the connection

Prototypes
#include <sys/socket.h>

int getpeername(int s, struct sockaddr *addr, socklen_t *len);

Description
Once you have either accept()ed a remote connection, or connect()ed to a server, you now

have what is known as a peer. Your peer is simply the computer you're connected to, identified by an IP
address and a port. So...

getpeername() simply returns a struct sockaddr_in filled with information about the
machine you're connected to.

Why is it called a “name”? Well, there are a lot of different kinds of sockets, not just Internet
Sockets like we're using in this guide, and so “name” was a nice generic term that covered all cases. In
our case, though, the peer's “name” is it's IP address and port.

Although the function returns the size of the resultant address in len, you must preload len with
the size of addr.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
// assume s is a connected socket

socklen_t len;
struct sockaddr_storage addr;
char ipstr[INET6_ADDRSTRLEN];
int port;

len = sizeof addr;
getpeername(s, (struct sockaddr*)&addr, &len);

// deal with both IPv4 and IPv6:
if (addr.ss_family == AF_INET) {
 struct sockaddr_in *s = (struct sockaddr_in *)&addr;
 port = ntohs(s->sin_port);
 inet_ntop(AF_INET, &s->sin_addr, ipstr, sizeof ipstr);
} else { // AF_INET6
 struct sockaddr_in6 *s = (struct sockaddr_in6 *)&addr;
 port = ntohs(s->sin6_port);
 inet_ntop(AF_INET6, &s->sin6_addr, ipstr, sizeof ipstr);
}

printf("Peer IP address: %s\n", ipstr);
printf("Peer port : %d\n", port);

See Also
gethostname(), gethostbyname(), gethostbyaddr()

Beej's Guide to Network Programming 71

9.10. errno

Holds the error code for the last system call

Prototypes
#include <errno.h>

int errno;

Description
This is the variable that holds error information for a lot of system calls. If you'll recall, things like

socket() and listen() return -1 on error, and they set the exact value of errno to let you know
specifically which error occurred.

The header file errno.h lists a bunch of constant symbolic names for errors, such as EADDRINUSE,
EPIPE, ECONNREFUSED, etc. Your local man pages will tell you what codes can be returned as an error,
and you can use these at run time to handle different errors in different ways.

Or, more commonly, you can call perror() or strerror() to get a human-readable version of
the error.

One thing to note, for you multithreading enthusiasts, is that on most systems errno is defined in
a threadsafe manner. (That is, it's not actually a global variable, but it behaves just like a global variable
would in a single-threaded environment.)

Return Value
The value of the variable is the latest error to have transpired, which might be the code for “success”

if the last action succeeded.

Example
s = socket(PF_INET, SOCK_STREAM, 0);
if (s == -1) {
 perror("socket"); // or use strerror()
}

tryagain:
if (select(n, &readfds, NULL, NULL) == -1) {
 // an error has occurred!!

 // if we were only interrupted, just restart the select() call:
 if (errno == EINTR) goto tryagain; // AAAA! goto!!!

 // otherwise it's a more serious error:
 perror("select");
 exit(1);
}

See Also
perror(), strerror()

Beej's Guide to Network Programming 72

9.11. fcntl()

Control socket descriptors

Prototypes
#include <sys/unistd.h>
#include <sys/fcntl.h>

int fcntl(int s, int cmd, long arg);

Description
This function is typically used to do file locking and other file-oriented stuff, but it also has a couple

socket-related functions that you might see or use from time to time.
Parameter s is the socket descriptor you wish to operate on, cmd should be set to F_SETFL, and arg

can be one of the following commands. (Like I said, there's more to fcntl() than I'm letting on here,
but I'm trying to stay socket-oriented.)

O_NONBLOCK Set the socket to be non-blocking. See the section on blocking for more
details.

O_ASYNC Set the socket to do asynchronous I/O. When data is ready to be recv()'d
on the socket, the signal SIGIO will be raised. This is rare to see, and
beyond the scope of the guide. And I think it's only available on certain
systems.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)
Different uses of the fcntl() system call actually have different return values, but I haven't

covered them here because they're not socket-related. See your local fcntl() man page for more
information.

Example
int s = socket(PF_INET, SOCK_STREAM, 0);

fcntl(s, F_SETFL, O_NONBLOCK); // set to non-blocking
fcntl(s, F_SETFL, O_ASYNC); // set to asynchronous I/O

See Also
Blocking, send()

Beej's Guide to Network Programming 73

9.12. htons(), htonl(), ntohs(), ntohl()

Convert multi-byte integer types from host byte order to network byte order

Prototypes
#include <netinet/in.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

Description
Just to make you really unhappy, different computers use different byte orderings internally for their

multibyte integers (i.e. any integer that's larger than a char.) The upshot of this is that if you send() a
two-byte short int from an Intel box to a Mac (before they became Intel boxes, too, I mean), what one
computer thinks is the number 1, the other will think is the number 256, and vice-versa.

The way to get around this problem is for everyone to put aside their differences and agree that
Motorola and IBM had it right, and Intel did it the weird way, and so we all convert our byte orderings
to “big-endian” before sending them out. Since Intel is a “little-endian” machine, it's far more politically
correct to call our preferred byte ordering “Network Byte Order”. So these functions convert from your
native byte order to network byte order and back again.

(This means on Intel these functions swap all the bytes around, and on PowerPC they do nothing
because the bytes are already in Network Byte Order. But you should always use them in your code
anyway, since someone might want to build it on an Intel machine and still have things work properly.)

Note that the types involved are 32-bit (4 byte, probably int) and 16-bit (2 byte, very likely short)
numbers. 64-bit machines might have a htonll() for 64-bit ints, but I've not seen it. You'll just have to
write your own.

Anyway, the way these functions work is that you first decide if you're converting from host (your
machine's) byte order or from network byte order. If “host”, the the first letter of the function you're
going to call is “h”. Otherwise it's “n” for “network”. The middle of the function name is always “to”
because you're converting from one “to” another, and the penultimate letter shows what you're converting
to. The last letter is the size of the data, “s” for short, or “l” for long. Thus:

htons() host to network short
htonl() host to network long
ntohs() network to host short
ntohl() network to host long

Return Value
Each function returns the converted value.

Example
uint32_t some_long = 10;
uint16_t some_short = 20;

uint32_t network_byte_order;

// convert and send
network_byte_order = htonl(some_long);
send(s, &network_byte_order, sizeof(uint32_t), 0);

some_short == ntohs(htons(some_short)); // this expression is true

Beej's Guide to Network Programming 74

9.13. inet_ntoa(), inet_aton(), inet_addr

Convert IP addresses from a dots-and-number string to a struct in_addr and back

Prototypes
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

// ALL THESE ARE DEPRECATED! Use inet_pton() or inet_ntop() instead!!

char *inet_ntoa(struct in_addr in);
int inet_aton(const char *cp, struct in_addr *inp);
in_addr_t inet_addr(const char *cp);

Description
These functions are deprecated because they don't handle IPv6! Use inet_ntop() or

inet_pton() instead! They are included here because they can still be found in the wild.
 All of these functions convert from a struct in_addr (part of your struct sockaddr_in,

most likely) to a string in dots-and-numbers format (e.g. “192.168.5.10”) and vice-versa. If you have
an IP address passed on the command line or something, this is the easiest way to get a struct
in_addr to connect() to, or whatever. If you need more power, try some of the DNS functions like
gethostbyname() or attempt a coup d'État in your local country.

The function inet_ntoa() converts a network address in a struct in_addr to a dots-and-
numbers format string. The “n” in “ntoa” stands for network, and the “a” stands for ASCII for historical
reasons (so it's “Network To ASCII”—the “toa” suffix has an analogous friend in the C library called
atoi() which converts an ASCII string to an integer.)

The function inet_aton() is the opposite, converting from a dots-and-numbers string into a
in_addr_t (which is the type of the field s_addr in your struct in_addr.)

Finally, the function inet_addr() is an older function that does basically the same thing as
inet_aton(). It's theoretically deprecated, but you'll see it a lot and the police won't come get you if
you use it.

Return Value
inet_aton() returns non-zero if the address is a valid one, and it returns zero if the address is

invalid.
inet_ntoa() returns the dots-and-numbers string in a static buffer that is overwritten with each

call to the function.
inet_addr() returns the address as an in_addr_t, or -1 if there's an error. (That is the same

result as if you tried to convert the string “255.255.255.255”, which is a valid IP address. This is why
inet_aton() is better.)

Example
struct sockaddr_in antelope;
char *some_addr;

inet_aton("10.0.0.1", &antelope.sin_addr); // store IP in antelope

some_addr = inet_ntoa(antelope.sin_addr); // return the IP
printf("%s\n", some_addr); // prints "10.0.0.1"

// and this call is the same as the inet_aton() call, above:
antelope.sin_addr.s_addr = inet_addr("10.0.0.1");

See Also
inet_ntop(), inet_pton(), gethostbyname(), gethostbyaddr()

Beej's Guide to Network Programming 75

9.14. inet_ntop(), inet_pton()

Convert IP addresses to human-readable form and back.

Prototypes
#include <arpa/inet.h>

const char *inet_ntop(int af, const void *src,
 char *dst, socklen_t size);

int inet_pton(int af, const char *src, void *dst);

Description
These functions are for dealing with human-readable IP addresses and converting them to their

binary representation for use with various functions and system calls. The “n” stands for “network”, and
“p” for “presentation”. Or “text presentation”. But you can think of it as “printable”. “ntop” is “network
to printable”. See?

Sometimes you don't want to look at a pile of binary numbers when looking at an IP address. You
want it in a nice printable form, like 192.0.2.180, or 2001:db8:8714:3a90::12. In that case,
inet_ntop() is for you.

inet_ntop() takes the address family in the af parameter (either AF_INET or AF_INET6). The
src parameter should be a pointer to either a struct in_addr or struct in6_addr containing the
address you wish to convert to a string. Finally dst and size are the pointer to the destination string and
the maximum length of that string.

What should the maximum length of the dst string be? What is the maximum length for IPv4 and
IPv6 addresses? Fortunately there are a couple of macros to help you out. The maximum lengths are:
INET_ADDRSTRLEN and INET6_ADDRSTRLEN.

Other times, you might have a string containing an IP address in readable form, and you want to
pack it into a struct sockaddr_in or a struct sockaddr_in6. In that case, the opposite funcion
inet_pton() is what you're after.

inet_pton() also takes an address family (either AF_INET or AF_INET6) in the af parameter.
The src parameter is a pointer to a string containing the IP address in printable form. Lastly the dst
parameter points to where the result should be stored, which is probably a struct in_addr or struct
in6_addr.

These functions don't do DNS lookups—you'll need getaddinfo() for that.

Return Value
inet_ntop() returns the dst parameter on success, or NULL on failure (and errno is set).
inet_pton() returns 1 on success. It returns -1 if there was an error (errno is set), or 0 if the

input isn't a valid IP address.

Example
// IPv4 demo of inet_ntop() and inet_pton()

struct sockaddr_in sa;
char str[INET_ADDRSTRLEN];

// store this IP address in sa:
inet_pton(AF_INET, "192.0.2.33", &(sa.sin_addr));

// now get it back and print it
inet_ntop(AF_INET, &(sa.sin_addr), str, INET_ADDRSTRLEN);

printf("%s\n", str); // prints "192.0.2.33"

// IPv6 demo of inet_ntop() and inet_pton()
// (basically the same except with a bunch of 6s thrown around)

struct sockaddr_in6 sa;

Beej's Guide to Network Programming 76

char str[INET6_ADDRSTRLEN];

// store this IP address in sa:
inet_pton(AF_INET6, "2001:db8:8714:3a90::12", &(sa.sin6_addr));

// now get it back and print it
inet_ntop(AF_INET6, &(sa.sin6_addr), str, INET6_ADDRSTRLEN);

printf("%s\n", str); // prints "2001:db8:8714:3a90::12"

// Helper function you can use:

//Convert a struct sockaddr address to a string, IPv4 and IPv6:

char *get_ip_str(const struct sockaddr *sa, char *s, size_t maxlen)
{
 switch(sa->sa_family) {
 case AF_INET:
 inet_ntop(AF_INET, &(((struct sockaddr_in *)sa)->sin_addr),
 s, maxlen);
 break;

 case AF_INET6:
 inet_ntop(AF_INET6, &(((struct sockaddr_in6 *)sa)->sin6_addr),
 s, maxlen);
 break;

 default:
 strncpy(s, "Unknown AF", maxlen);
 return NULL;
 }

 return s;
}

See Also
getaddrinfo()

Beej's Guide to Network Programming 77

9.15. listen()

Tell a socket to listen for incoming connections

Prototypes
#include <sys/socket.h>

int listen(int s, int backlog);

Description
You can take your socket descriptor (made with the socket() system call) and tell it to listen for

incoming connections. This is what differentiates the servers from the clients, guys.
The backlog parameter can mean a couple different things depending on the system you on, but

loosely it is how many pending connections you can have before the kernel starts rejecting new ones. So
as the new connections come in, you should be quick to accept() them so that the backlog doesn't fill.
Try setting it to 10 or so, and if your clients start getting “Connection refused” under heavy load, set it
higher.

Before calling listen(), your server should call bind() to attach itself to a specific port number.
That port number (on the server's IP address) will be the one that clients connect to.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
struct addrinfo hints, *res;
int sockfd;

// first, load up address structs with getaddrinfo():

memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE; // fill in my IP for me

getaddrinfo(NULL, "3490", &hints, &res);

// make a socket:

sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

// bind it to the port we passed in to getaddrinfo():

bind(sockfd, res->ai_addr, res->ai_addrlen);

listen(sockfd, 10); // set s up to be a server (listening) socket

// then have an accept() loop down here somewhere

See Also
accept(), bind(), socket()

Beej's Guide to Network Programming 78

9.16. perror(), strerror()

Print an error as a human-readable string

Prototypes
#include <stdio.h>
#include <string.h> // for strerror()

void perror(const char *s);
char *strerror(int errnum);

Description
Since so many functions return -1 on error and set the value of the variable errno to be some

number, it would sure be nice if you could easily print that in a form that made sense to you.
Mercifully, perror() does that. If you want more description to be printed before the error, you

can point the parameter s to it (or you can leave s as NULL and nothing additional will be printed.)
In a nutshell, this function takes errno values, like ECONNRESET, and prints them nicely, like

“Connection reset by peer.”
The function strerror() is very similar to perror(), except it returns a pointer to the error

message string for a given value (you usually pass in the variable errno.)

Return Value
strerror() returns a pointer to the error message string.

Example
int s;

s = socket(PF_INET, SOCK_STREAM, 0);

if (s == -1) { // some error has occurred
 // prints "socket error: " + the error message:
 perror("socket error");
}

// similarly:
if (listen(s, 10) == -1) {
 // this prints "an error: " + the error message from errno:
 printf("an error: %s\n", strerror(errno));
}

See Also
errno

Beej's Guide to Network Programming 79

9.17. poll()

Test for events on multiple sockets simultaneously

Prototypes
#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout);

Description
This function is very similar to select() in that they both watch sets of file descriptors for events,

such as incoming data ready to recv(), socket ready to send() data to, out-of-band data ready to
recv(), errors, etc.

The basic idea is that you pass an array of nfds struct pollfds in ufds, along with a timeout in
milliseconds (1000 milliseconds in a second.) The timeout can be negative if you want to wait forever.
If no event happens on any of the socket descriptors by the timeout, poll() will return.

Each element in the array of struct pollfds represents one socket descriptor, and contains the
following fields:
struct pollfd {
 int fd; // the socket descriptor
 short events; // bitmap of events we're interested in
 short revents; // when poll() returns, bitmap of events that occurred
};

Before calling poll(), load fd with the socket descriptor (if you set fd to a negative number, this
struct pollfd is ignored and its revents field is set to zero) and then construct the events field by
bitwise-ORing the following macros:

POLLIN Alert me when data is ready to recv() on this socket.
POLLOUT Alert me when I can send() data to this socket without blocking.
POLLPRI Alert me when out-of-band data is ready to recv() on this socket.

Once the poll() call returns, the revents field will be constructed as a bitwise-OR of the above
fields, telling you which descriptors actually have had that event occur. Additionally, these other fields
might be present:

POLLERR An error has occurred on this socket.
POLLHUP The remote side of the connection hung up.
POLLNVAL Something was wrong with the socket descriptor fd—maybe it's

uninitialized?

Return Value
Returns the number of elements in the ufds array that have had event occur on them; this can be

zero if the timeout occurred. Also returns -1 on error (and errno will be set accordingly.)

Example
int s1, s2;
int rv;
char buf1[256], buf2[256];
struct pollfd ufds[2];

s1 = socket(PF_INET, SOCK_STREAM, 0);
s2 = socket(PF_INET, SOCK_STREAM, 0);

// pretend we've connected both to a server at this point
//connect(s1, ...)...
//connect(s2, ...)...

Beej's Guide to Network Programming 80

// set up the array of file descriptors.
//
// in this example, we want to know when there's normal or out-of-band
// data ready to be recv()'d...

ufds[0].fd = s1;
ufds[0].events = POLLIN | POLLPRI; // check for normal or out-of-band

ufds[1] = s2;
ufds[1].events = POLLIN; // check for just normal data

// wait for events on the sockets, 3.5 second timeout
rv = poll(ufds, 2, 3500);

if (rv == -1) {
 perror("poll"); // error occurred in poll()
} else if (rv == 0) {
 printf("Timeout occurred! No data after 3.5 seconds.\n");
} else {
 // check for events on s1:
 if (ufds[0].revents & POLLIN) {
 recv(s1, buf1, sizeof buf1, 0); // receive normal data
 }
 if (ufds[0].revents & POLLPRI) {
 recv(s1, buf1, sizeof buf1, MSG_OOB); // out-of-band data
 }

 // check for events on s2:
 if (ufds[1].revents & POLLIN) {
 recv(s1, buf2, sizeof buf2, 0);
 }
}

See Also
select()

Beej's Guide to Network Programming 81

9.18. recv(), recvfrom()

Receive data on a socket

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

ssize_t recv(int s, void *buf, size_t len, int flags);
ssize_t recvfrom(int s, void *buf, size_t len, int flags,
 struct sockaddr *from, socklen_t *fromlen);

Description
Once you have a socket up and connected, you can read incoming data from the remote side using

the recv() (for TCP SOCK_STREAM sockets) and recvfrom() (for UDP SOCK_DGRAM sockets).
Both functions take the socket descriptor s, a pointer to the buffer buf, the size (in bytes) of the

buffer len, and a set of flags that control how the functions work.
Additionally, the recvfrom() takes a struct sockaddr*, from that will tell you where the

data came from, and will fill in fromlen with the size of struct sockaddr. (You must also initialize
fromlen to be the size of from or struct sockaddr.)

So what wondrous flags can you pass into this function? Here are some of them, but you should
check your local man pages for more information and what is actually supported on your system. You
bitwise-or these together, or just set flags to 0 if you want it to be a regular vanilla recv().

MSG_OOB Receive Out of Band data. This is how to get data that has been sent to
you with the MSG_OOB flag in send(). As the receiving side, you will
have had signal SIGURG raised telling you there is urgent data. In your
handler for that signal, you could call recv() with this MSG_OOB flag.

MSG_PEEK If you want to call recv() “just for pretend”, you can call it with this
flag. This will tell you what's waiting in the buffer for when you call
recv() “for real” (i.e. without the MSG_PEEK flag. It's like a sneak
preview into the next recv() call.

MSG_WAITALL Tell recv() to not return until all the data you specified in the len
parameter. It will ignore your wishes in extreme circumstances,
however, like if a signal interrupts the call or if some error occurs or if
the remote side closes the connection, etc. Don't be mad with it.

When you call recv(), it will block until there is some data to read. If you want to not block, set
the socket to non-blocking or check with select() or poll() to see if there is incoming data before
calling recv() or recvfrom().

Return Value
Returns the number of bytes actually received (which might be less than you requested in the len

parameter), or -1 on error (and errno will be set accordingly.)
If the remote side has closed the connection, recv() will return 0. This is the normal method for

determining if the remote side has closed the connection. Normality is good, rebel!

Example
// stream sockets and recv()

struct addrinfo hints, *res;
int sockfd;
char buf[512];
int byte_count;

// get host info, make socket, and connect it
memset(&hints, 0, sizeof hints);

Beej's Guide to Network Programming 82

hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_STREAM;
getaddrinfo("www.example.com", "3490", &hints, &res);
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
connect(sockfd, res->ai_addr, res->ai_addrlen);

// all right! now that we're connected, we can receive some data!
byte_count = recv(sockfd, buf, sizeof buf, 0);
printf("recv()'d %d bytes of data in buf\n", byte_count);

// datagram sockets and recvfrom()

struct addrinfo hints, *res;
int sockfd;
int byte_count;
socklen_t fromlen;
struct sockaddr_storage addr;
char buf[512];
char ipstr[INET6_ADDRSTRLEN];

// get host info, make socket, bind it to port 4950
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_DGRAM;
hints.ai_flags = AI_PASSIVE;
getaddrinfo(NULL, "4950", &hints, &res);
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
bind(sockfd, res->ai_addr, res->ai_addrlen);

// no need to accept(), just recvfrom():

fromlen = sizeof addr;
byte_count = recvfrom(sockfd, buf, sizeof buf, 0, &addr, &fromlen);

printf("recv()'d %d bytes of data in buf\n", byte_count);
printf("from IP address %s\n",
 inet_ntop(addr.ss_family,
 addr.ss_family == AF_INET?
 ((struct sockadd_in *)&addr)->sin_addr:
 ((struct sockadd_in6 *)&addr)->sin6_addr,
 ipstr, sizeof ipstr);

See Also
send(), sendto(), select(), poll(), Blocking

Beej's Guide to Network Programming 83

9.19. select()

Check if sockets descriptors are ready to read/write

Prototypes
#include <sys/select.h>

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
 struct timeval *timeout);

FD_SET(int fd, fd_set *set);
FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

Description
The select() function gives you a way to simultaneously check multiple sockets to see if they

have data waiting to be recv()d, or if you can send() data to them without blocking, or if some
exception has occurred.

You populate your sets of socket descriptors using the macros, like FD_SET(), above. Once you
have the set, you pass it into the function as one of the following parameters: readfds if you want to
know when any of the sockets in the set is ready to recv() data, writefds if any of the sockets is ready
to send() data to, and/or exceptfds if you need to know when an exception (error) occurs on any of
the sockets. Any or all of these parameters can be NULL if you're not interested in those types of events.
After select() returns, the values in the sets will be changed to show which are ready for reading or
writing, and which have exceptions.

The first parameter, n is the highest-numbered socket descriptor (they're just ints, remember?) plus
one.

Lastly, the struct timeval, timeout, at the end—this lets you tell select() how long to check
these sets for. It'll return after the timeout, or when an event occurs, whichever is first. The struct
timeval has two fields: tv_sec is the number of seconds, to which is added tv_usec, the number of
microseconds (1,000,000 microseconds in a second.)

The helper macros do the following:

FD_SET(int fd, fd_set *set); Add fd to the set.
FD_CLR(int fd, fd_set *set); Remove fd from the set.
FD_ISSET(int fd, fd_set *set); Return true if fd is in the set.
FD_ZERO(fd_set *set); Clear all entries from the set.

Return Value
Returns the number of descriptors in the set on success, 0 if the timeout was reached, or -1 on error

(and errno will be set accordingly.) Also, the sets are modified to show which sockets are ready.

Example
int s1, s2, n;
fd_set readfds;
struct timeval tv;
char buf1[256], buf2[256];

// pretend we've connected both to a server at this point
//s1 = socket(...);
//s2 = socket(...);
//connect(s1, ...)...
//connect(s2, ...)...

// clear the set ahead of time
FD_ZERO(&readfds);

Beej's Guide to Network Programming 84

// add our descriptors to the set
FD_SET(s1, &readfds);
FD_SET(s2, &readfds);

// since we got s2 second, it's the "greater", so we use that for
// the n param in select()
n = s2 + 1;

// wait until either socket has data ready to be recv()d (timeout 10.5 secs)
tv.tv_sec = 10;
tv.tv_usec = 500000;
rv = select(n, &readfds, NULL, NULL, &tv);

if (rv == -1) {
 perror("select"); // error occurred in select()
} else if (rv == 0) {
 printf("Timeout occurred! No data after 10.5 seconds.\n");
} else {
 // one or both of the descriptors have data
 if (FD_ISSET(s1, &readfds)) {
 recv(s1, buf1, sizeof buf1, 0);
 }
 if (FD_ISSET(s2, &readfds)) {
 recv(s1, buf2, sizeof buf2, 0);
 }
}

See Also
poll()

Beej's Guide to Network Programming 85

9.20. setsockopt(), getsockopt()

Set various options for a socket

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(int s, int level, int optname, void *optval,
 socklen_t *optlen);
int setsockopt(int s, int level, int optname, const void *optval,
 socklen_t optlen);

Description
Sockets are fairly configurable beasts. In fact, they are so configurable, I'm not even going to cover

it all here. It's probably system-dependent anyway. But I will talk about the basics.
Obviously, these functions get and set certain options on a socket. On a Linux box, all the socket

information is in the man page for socket in section 7. (Type: “man 7 socket” to get all these goodies.)
As for parameters, s is the socket you're talking about, level should be set to SOL_SOCKET. Then

you set the optname to the name you're interested in. Again, see your man page for all the options, but
here are some of the most fun ones:

SO_BINDTODEVICE Bind this socket to a symbolic device name like eth0 instead of using
bind() to bind it to an IP address. Type the command ifconfig under
Unix to see the device names.

SO_REUSEADDR Allows other sockets to bind() to this port, unless there is an active
listening socket bound to the port already. This enables you to get
around those “Address already in use” error messages when you try to
restart your server after a crash.

SO_BROADCAST Allows UDP datagram (SOCK_DGRAM) sockets to send and receive
packets sent to and from the broadcast address. Does nothing
—NOTHING!!—to TCP stream sockets! Hahaha!

As for the parameter optval, it's usually a pointer to an int indicating the value in question. For
booleans, zero is false, and non-zero is true. And that's an absolute fact, unless it's different on your
system. If there is no parameter to be passed, optval can be NULL.

The final parameter, optlen, is filled out for you by getsockopt() and you have to specify it for
setsockopt(), where it will probably be sizeof(int).

Warning: on some systems (notably Sun and Windows), the option can be a char instead of an
int, and is set to, for example, a character value of '1' instead of an int value of 1. Again, check your
own man pages for more info with “man setsockopt” and “man 7 socket”!

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
int optval;
int optlen;
char *optval2;

// set SO_REUSEADDR on a socket to true (1):
optval = 1;
setsockopt(s1, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof optval);

// bind a socket to a device name (might not work on all systems):
optval2 = "eth1"; // 4 bytes long, so 4, below:
setsockopt(s2, SOL_SOCKET, SO_BINDTODEVICE, optval2, 4);

Beej's Guide to Network Programming 86

// see if the SO_BROADCAST flag is set:
getsockopt(s3, SOL_SOCKET, SO_BROADCAST, &optval, &optlen);
if (optval != 0) {
 print("SO_BROADCAST enabled on s3!\n");
}

See Also
fcntl()

Beej's Guide to Network Programming 87

9.21. send(), sendto()

Send data out over a socket

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

ssize_t send(int s, const void *buf, size_t len, int flags);
ssize_t sendto(int s, const void *buf, size_t len,
 int flags, const struct sockaddr *to,
 socklen_t tolen);

Description
These functions send data to a socket. Generally speaking, send() is used for TCP SOCK_STREAM

connected sockets, and sendto() is used for UDP SOCK_DGRAM unconnected datagram sockets. With
the unconnected sockets, you must specify the destination of a packet each time you send one, and that's
why the last parameters of sendto() define where the packet is going.

With both send() and sendto(), the parameter s is the socket, buf is a pointer to the data you
want to send, len is the number of bytes you want to send, and flags allows you to specify more
information about how the data is to be sent. Set flags to zero if you want it to be “normal” data. Here
are some of the commonly used flags, but check your local send() man pages for more details:

MSG_OOB Send as “out of band” data. TCP supports this, and it's a way to tell the
receiving system that this data has a higher priority than the normal
data. The receiver will receive the signal SIGURG and it can then
receive this data without first receiving all the rest of the normal data
in the queue.

MSG_DONTROUTE Don't send this data over a router, just keep it local.
MSG_DONTWAIT If send() would block because outbound traffic is clogged, have it

return EAGAIN. This is like a “enable non-blocking just for this send.”
See the section on blocking for more details.

MSG_NOSIGNAL If you send() to a remote host which is no longer recv()ing, you'll
typically get the signal SIGPIPE. Adding this flag prevents that signal
from being raised.

Return Value
Returns the number of bytes actually sent, or -1 on error (and errno will be set accordingly.) Note

that the number of bytes actually sent might be less than the number you asked it to send! See the section
on handling partial send()s for a helper function to get around this.

Also, if the socket has been closed by either side, the process calling send() will get the signal
SIGPIPE. (Unless send() was called with the MSG_NOSIGNAL flag.)

Example
int spatula_count = 3490;
char *secret_message = "The Cheese is in The Toaster";

int stream_socket, dgram_socket;
struct sockaddr_in dest;
int temp;

// first with TCP stream sockets:

// assume sockets are made and connected
//stream_socket = socket(...
//connect(stream_socket, ...

Beej's Guide to Network Programming 88

// convert to network byte order
temp = htonl(spatula_count);
// send data normally:
send(stream_socket, &temp, sizeof temp, 0);

// send secret message out of band:
send(stream_socket, secret_message, strlen(secret_message)+1, MSG_OOB);

// now with UDP datagram sockets:
//getaddrinfo(...
//dest = ... // assume "dest" holds the address of the destination
//dgram_socket = socket(...

// send secret message normally:
sendto(dgram_socket, secret_message, strlen(secret_message)+1, 0,
 (struct sockaddr*)&dest, sizeof dest);

See Also
recv(), recvfrom()

Beej's Guide to Network Programming 89

9.22. shutdown()

Stop further sends and receives on a socket

Prototypes
#include <sys/socket.h>

int shutdown(int s, int how);

Description
That's it! I've had it! No more send()s are allowed on this socket, but I still want to recv() data

on it! Or vice-versa! How can I do this?
When you close() a socket descriptor, it closes both sides of the socket for reading and

writing, and frees the socket descriptor. If you just want to close one side or the other, you can use this
shutdown() call.

As for parameters, s is obviously the socket you want to perform this action on, and what action that
is can be specified with the how parameter. How can be SHUT_RD to prevent further recv()s, SHUT_WR
to prohibit further send()s, or SHUT_RDWR to do both.

Note that shutdown() doesn't free up the socket descriptor, so you still have to eventually
close() the socket even if it has been fully shut down.

This is a rarely used system call.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
int s = socket(PF_INET, SOCK_STREAM, 0);

// ...do some send()s and stuff in here...

// and now that we're done, don't allow any more sends()s:
shutdown(s, SHUT_WR);

See Also
close()

Beej's Guide to Network Programming 90

9.23. socket()

Allocate a socket descriptor

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Description
Returns a new socket descriptor that you can use to do sockety things with. This is generally the

first call in the whopping process of writing a socket program, and you can use the result for subsequent
calls to listen(), bind(), accept(), or a variety of other functions.

In usual usage, you get the values for these parameters from a call to getaddrinfo(), as shown in
the example below. But you can fill them in by hand if you really want to.

domain domain describes what kind of socket you're interested in. This can, believe
me, be a wide variety of things, but since this is a socket guide, it's going to be
PF_INET for IPv4, and PF_INET6 for IPv6.

type Also, the type parameter can be a number of things, but you'll probably be
setting it to either SOCK_STREAM for reliable TCP sockets (send(), recv()) or
SOCK_DGRAM for unreliable fast UDP sockets (sendto(), recvfrom().)

(Another interesting socket type is SOCK_RAW which can be used to construct
packets by hand. It's pretty cool.)

protocol Finally, the protocol parameter tells which protocol to use with a certain
socket type. Like I've already said, for instance, SOCK_STREAM uses TCP.
Fortunately for you, when using SOCK_STREAM or SOCK_DGRAM, you can just set
the protocol to 0, and it'll use the proper protocol automatically. Otherwise, you
can use getprotobyname() to look up the proper protocol number.

Return Value
The new socket descriptor to be used in subsequent calls, or -1 on error (and errno will be set

accordingly.)

Example
struct addrinfo hints, *res;
int sockfd;

// first, load up address structs with getaddrinfo():

memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // AF_INET, AF_INET6, or AF_UNSPEC
hints.ai_socktype = SOCK_STREAM; // SOCK_STREAM or SOCK_DGRAM

getaddrinfo("www.example.com", "3490", &hints, &res);

// make a socket using the information gleaned from getaddrinfo():
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

See Also
accept(), bind(), getaddrinfo(), listen()

Beej's Guide to Network Programming 91

9.24. struct sockaddr and pals

Structures for handling internet addresses

Prototypes
include <netinet/in.h>

// All pointers to socket address structures are often cast to pointers
// to this type before use in various functions and system calls:

struct sockaddr {
 unsigned short sa_family; // address family, AF_xxx
 char sa_data[14]; // 14 bytes of protocol address
};

// IPv4 AF_INET sockets:

struct sockaddr_in {
 short sin_family; // e.g. AF_INET, AF_INET6
 unsigned short sin_port; // e.g. htons(3490)
 struct in_addr sin_addr; // see struct in_addr, below
 char sin_zero[8]; // zero this if you want to
};

struct in_addr {
 unsigned long s_addr; // load with inet_pton()
};

// IPv6 AF_INET6 sockets:

struct sockaddr_in6 {
 u_int16_t sin6_family; // address family, AF_INET6
 u_int16_t sin6_port; // port number, Network Byte Order
 u_int32_t sin6_flowinfo; // IPv6 flow information
 struct in6_addr sin6_addr; // IPv6 address
 u_int32_t sin6_scope_id; // Scope ID
};

struct in6_addr {
 unsigned char s6_addr[16]; // load with inet_pton()
};

// General socket address holding structure, big enough to hold either
// struct sockaddr_in or struct sockaddr_in6 data:

struct sockaddr_storage {
 sa_family_t ss_family; // address family

 // all this is padding, implementation specific, ignore it:
 char __ss_pad1[_SS_PAD1SIZE];
 int64_t __ss_align;
 char __ss_pad2[_SS_PAD2SIZE];
};

Description
These are the basic structures for all syscalls and functions that deal with internet addresses. Often

you'll use getaddinfo() to fill these structures out, and then will read them when you have to.
In memory, the struct sockaddr_in and struct sockaddr_in6 share the same beginning

structure as struct sockaddr, and you can freely cast the pointer of one type to the other without any
harm, except the possible end of the universe.

Beej's Guide to Network Programming 92

Just kidding on that end-of-the-universe thing...if the universe does end when you cast a struct
sockaddr_in* to a struct sockaddr*, I promise you it's pure coincidence and you shouldn't even
worry about it.

So, with that in mind, remember that whenever a function says it takes a struct sockaddr* you
can cast your struct sockaddr_in*, struct sockaddr_in6*, or struct sockadd_storage* to
that type with ease and safety.

struct sockaddr_in is the structure used with IPv4 addresses (e.g. “192.0.2.10”). It holds an
address family (AF_INET), a port in sin_port, and an IPv4 address in sin_addr.

There's also this sin_zero field in struct sockaddr_in which some people claim must be set
to zero. Other people don't claim anything about it (the Linux documentation doesn't even mention it at
all), and setting it to zero doesn't seem to be actually necessary. So, if you feel like it, set it to zero using
memset().

Now, that struct in_addr is a weird beast on different systems. Sometimes it's a crazy union
with all kinds of #defines and other nonsense. But what you should do is only use the s_addr field in
this structure, because many systems only implement that one.

struct sockadd_in6 and struct in6_addr are very similar, except they're used for IPv6.
struct sockaddr_storage is a struct you can pass to accept() or recvfrom() when you're

trying to write IP version-agnostic code and you don't know if the new address is going to be IPv4 or
IPv6. The struct sockaddr_storage structure is large enough to hold both types, unlike the original
small struct sockaddr.

Example
// IPv4:

struct sockaddr_in ip4addr;
int s;

ip4addr.sin_family = AF_INET;
ip4addr.sin_port = htons(3490);
inet_pton(AF_INET, "10.0.0.1", &ip4addr.sin_addr);

s = socket(PF_INET, SOCK_STREAM, 0);
bind(s, (struct sockaddr*)&ip4addr, sizeof ip4addr);

// IPv6:

struct sockaddr_in6 ip6addr;
int s;

ip6addr.sin6_family = AF_INET6;
ip6addr.sin6_port = htons(4950);
inet_pton(AF_INET6, "2001:db8:8714:3a90::12", &ip6addr.sin6_addr);

s = socket(PF_INET6, SOCK_STREAM, 0);
bind(s, (struct sockaddr*)&ip6addr, sizeof ip6addr);

See Also
accept(), bind(), connect(), inet_aton(), inet_ntoa()

